,如果不是他发的那篇论文,距离人们真正意识到椭圆反曲解析还有更多巧妙的应用,恐怕还需要一段时间才行。
不再废话,随后他便开始了深入的研究。
“首先,先给出椭圆曲线的伽罗瓦表示。”
“给定一个有理数域Q上的椭圆曲线E,考虑它的Tate模块T?(E),这是由E的所有?-等分点生成的Z?-模,Galois群Gal(Q/Q)自然地作用在T?(E)上,这就给出了一个Galois表示。”
【ρ?:Gal(Q/Q)→GL(2,Z?)】
“然后就需要用到L函数。”
与上面的Galois表示ρ?相关联的,是椭圆曲线E的L-函数L(s,E),这个L-函数可以通过Euler乘积来进行定义。
【L(s,E)=∏(p) 1/(1-a_p p^(-s)+p^(1-2s)),其中p取遍所有的素数(E有好还原的),a_p是E在模p的还原上的迹】
草稿纸上的推导越来越多,椭圆曲线对于证明阿廷猜想来说,本身就能够扮演一个十分重要的角色。
就比如谷山志村定理,其本身就可以看成是椭圆语境下的阿廷猜想,而现在萧易要证明的阿廷猜想,就称得上是阿廷猜想的更一般形式。
因此,谷山志村定理的证明过程,也能够成为证明阿廷猜想过程中的一个参考。
“那么,利用朗兰兹对应的方法来研究,就是一个最佳的角度了。”
萧易的眉头一挑,从自己脑海中浮现出来的各种想法中,选定了这样的一个角度。
既然是涉及到了朗兰兹纲领的问题,那么用朗兰兹纲领的方法来解决,想必是非常合适的。
……
就这样,时间悄然过去。
不管是想要攻克黎曼猜想,又或者是阿廷猜想,都将注定是一场需要消耗长时间精力的事情。
这是属于数学的长征,而能够参加这样的长征的人,也就只有那么寥寥数人,或者是十数人而已。
甚至,其中还会有一部分的人,最终只是凑数的那么几个。
就像是过去一样,最终解决了某个问题的,只会是那么唯一的一个。
……